———————————————————————————————————————————————————

**Do all Plane Figures Tile a Plane?**

**With the slider at its default position, n = 3, move the****blue****triangle****by holding the white circle to tesselate the plane.**â€‹**Use the red circle to rotate the figure.**â€‹**With the slider now at 4, move the figure to tesselate the plane.**â€‹**Repeat the steps with n taking different values up to 10****.****Complete the following table;**()*Yes if it tiles the plane, and No if it doesnâ€™t.*

———————————————————————————————————————————————————

**Which Regular Plane Figures Tile a Plane?**

- Move the “vertices” slider in the applet below to start at 3.â€‹
- Use the red circle to rotate the figure to form a tessellation. Any direction you choose is ok.â€‹â€‹
- Repeat the steps with different number of sides up to 15. (
**Note:***For tiling to occur, there must be no gaps or overlaps.*)

**From the activity above, the triangle, square, and hexagon are the only polygons that will tile the plane. **

———————————————————————————————————————————————————

**Can Different Shapes be Jointly Used to Tile the Plane ?**

- Move and rotate the tiles by holding the red points to create a design.

Play around with the polygons and observe which ones could be used jointly to create a nice pattern for your floor or rug.

———————————————————————————————————————————————————

———————————————————————————————————————————————————

———————————————————————————————————————————————————

———————————————————————————————————————————————————

Login

Accessing this course requires a login. Please enter your credentials below!